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INTRODUCTION 

 

Background: Multimodality, the occurrence of multiple modes in the distribution of the data is a less-discussed issue in the area of 

count regression models. Objectives: To assess the suitability of Hermite regression model to predict the factors affecting the 

number of symptoms among pregnant women. Methods: This study is focused on comparing the performance of various count 

regression models when the dependent variable is both overdispersed and multimodal. The data is obtained from a community based 

prospective study of anxiety, depression during pregnancy and its relationship to pregnancy outcomes. Poisson, negative binomial, 

Hermite and generalized Hermite regression models were fitted to find the relationship between the variables. The models were 

compared using fit indices along with the estimates and standard errors. Distribution of randomized quantile residuals was also 

assessed to determine the goodness of fit of the models. Results: Based on the values of fit indices and tests, Hermite  regression 

was chosen as the best to establish the relationship between the response variable, number of somatic symptoms and the predictors. 

The model identified parity, stress and depression as the factors affecting number of somatic symptoms in pregnant women. 

Conclusions: The Poisson and negative binomial model may not accommodate multimodality as they are framed based on unimodal 

distributions. The Hermite  regression approach is an ideal approach for count data, as it can handle both overdispersion as well as 

multimodality. 
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________________________________________________________________________________________________________ 

 

INTRODUCTION 

 

Researchers in biological, behavioural science, epidemiology, etc. are likely to gather information on different variables as a 

continuum rather than a categorical one. Often, the research questions on outcome involve count variables1,2,3,4,5. Essentially,  a 

count variable reflects the number of occurrences of an event, generally over a period of time and it always assumes it’s values to 

be either a zero or a positive integer (i.e. 0, 1, 2, 3, etc.).  

Poisson and Negative Binomial (NB) are the two regression approaches commonly used for count data.  The NB regression is ideal 

when the count data is observed with high variability called over dispersion.  Over dispersion may occur due to several reasons[1] 

such as effect of omitted covariates, dependency between the measurements, etc. 

Apart from overdispersion count variables may also exhibit Multimodality, described as the occurrence of multiple peaks or local 

maxima[2]. Hermite regression is a generalized form of Poisson regression that can handle both overdispersion and 

multimodality[3]. 
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This study is aimed to compare and assess the suitability of Hermite  regression approach with the other count regression models to 

find out the variables associated with number of somatic symptoms experienced by pregnant women. 

 

MATERIALS AND METHODS 

Poisson regression 

The bench mark model for count data, Poisson regression fits the data under Generalized Linear Modeling (GLM) framework 

assuming, a Poisson distribution for the response variable[4].  The choice of Poisson distribution restricts the response variable to 

take only nonnegative values which most suits a count variable. The probability mass function of Poisson distribution is expressed 

as, 

𝑝(𝑌 = 𝑦) =
𝑒−𝜆𝜆𝑦

𝑦!
           ;

𝑦 = 0, 1, 2, …

𝐸(𝑦) = 𝑉(𝑦) = 𝜆
                                         (1)  

The Poisson regression models the mean count as function of covariates, 

               𝐸(𝑦𝑖 |𝑥𝑖 ) = 𝜆𝑖 = exp(𝑥𝑖
′ 𝛽) = 𝑒∑ 𝛽𝑗𝑥𝑗𝑖

𝑘
𝑗=1       ; i=1,2,3…,n; j=1,2,3,…,k        (2) 

The exponential link function restricts the expected count to be positive always. The Poisson regression can be written in linear 

from by taking ln(λi), 

              ln(𝜆𝑖) = 𝑥𝑖
′𝛽 = ∑ 𝛽𝑗

𝑘
𝑗=1 𝑥𝑖𝑗                                                                              (3) 

Inheriting the properties of Poisson distribution, The Poisson regression model assumes that the conditional mean is equal to the 

conditional variance  i.e.,    𝐸(𝑦𝑖|𝑥𝑖) = 𝑉(𝑦𝑖|𝑥𝑖) . This assumption is called equidispersion. The adherence of Poisson regression to 

the equidispersion assumption limits it’s application in real life situations as the count data is usually overdispersed, i.e., 𝐸(𝑦𝑖|𝑥𝑖) <
𝑉(𝑦𝑖|𝑥𝑖). Overdispersion causes the Poisson regression to underestimate the standard errors of regression coefficients, which results 

in overestimating the significance of the predictors[5]. 

Test of overdispersion 

Equidispersion, the key assumption of Poisson regression can be tested by employing a test for overdispersion[6]. The test can be 

performed by fitting the Poisson regression. H0: 𝛼 = 0 (equidispersion) versus H1:𝛼 > 0 can be performed after fitting an auxiliary 

ordinary least square regression on the dependent variable generated using,  
(𝑦𝑖−�̂�𝑖)

2
−𝑦𝑖

�̂�𝑖
. The regression equation can be written as, 

(𝑦𝑖−�̂�𝑖)
2
−𝑦𝑖

�̂�𝑖
= 𝛼�̂�𝑖 + 𝑒𝑖                                                                              (4) 

where, 𝑒𝑖  is an error term and �̂�𝑖 = exp (𝑥𝑖
′𝛽) is the expected value obtained from the Poisson fit. A positive 𝛼 indicates the 

overdispersion. 

Negative binomial regression 

The Negative Binomial (NB) regression is an alternative approach to model count data when the Poisson regression fails due to 

overdispersion. The NB regression can handle the overdispersion occurring due to unobserved heterogeneity and dependency 

between the events[7].  In NB regression, the unobserved heterogeneity is introduced through a random error function, ei. The NB 

model can be expressed by modifying equation (2) as, 

𝐸(𝑦𝑖 |𝑥𝑖 ) = �̃�𝑖 = exp (𝑥𝑖
′ 𝛽 + 𝑒𝑖) 

�̃�𝑖 = exp(𝑥𝑖
′ 𝛽) exp(𝑒𝑖) = exp (𝑥𝑖

′ 𝛽)𝛿𝑖    (5) 

where, exp(ei)=δi  is assumed to follow gamma distribution with mean 1 and variance 𝛼 = 1
𝜈𝑖⁄ . Hence, the NB distribution can be 

expressed as a mixture of Poisson and gamma distribution. The NB probability mass function can be written as  

𝑝(𝑦𝑖 |𝑥𝑖 ) =
Γ(𝑦𝑖 +𝛼

−1)

Γ(𝑦𝑖 +1)Γ(𝛼
−1)
(

𝛼−1

𝛼−1+𝜆𝑖
)
𝛼−1

(
𝜆𝑖

𝛼−1+𝜆𝑖
)
𝑦𝑖

  ; yi=0, 1, 2,… (6) 

The NB distribution has the mean and variance as  𝜆𝑖  and  𝜆𝑖 + 𝛼𝜆𝑖
2
 respectively.  NB regression is flexible to account the 

over dispersion in count data. However, it may not be compatible for multimodal count data. Regression models based on Hermite  

distribution are capable to account over dispersion as well as multimodality[4].  

Hermite regression 

Hermite distribution is essentially an extended form of Poisson distribution. The distribution got the name because the probability 

and factorial moments can be derived from a modified Hermite polynomial equation. The Hermite distribution is derived in several 

ways. It is a special case of Poisson binomial distribution. It can also be derived as a sum of two correlated Poisson variables or as 

a sum of an ordinary Poisson variable and an independent ‘doublet’ Poisson variable[8]. The probability mass function can be 

written as, 

          𝑝(𝑦𝑖 = 𝑘) = exp {−(𝑎1 + 𝑎2} ∑
𝑎1

𝑘−2𝑗𝑎2
2𝑗

(𝑘−2𝑗)!𝑗!

[𝑘 2⁄ ]

𝑗=0
       ; 𝑘 = 0,1,2, ….   (7) 

where, [k/2] is the integer part of k/2 and  a1 and a2 are the parameters of the distribution which are non-negative. The mean and 

variance of the distribution is defined as a1+2a2 and a1 +4a2. 

Gupta and Jain introduced the generalized version of the Hermite distribution by explaining the distribution of Y=Y1+mYm , where 

Y1 and Ym are two independent Poisson random variables with mean a1 and am respectively and m is a positive integer[9]. The 

probability mass function of generalized Hermite  distribution is defined as, 

𝑝(𝑦 = 𝑘) =

{
 
 

 
 

𝑒−𝑎1−𝑎𝑚                                         ;  𝑘 = 0
 
 

𝑒−𝑎1−𝑎𝑚 ∑
(𝑎𝑚)

𝑗(𝑎1)
𝑘−𝑚𝑗

𝑗!(𝑘−𝑚𝑗)!
         ; 𝑘 = 1,2,3…

[𝑘 𝑚⁄ ]

𝑗=0

  (8) 
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The mean and variance of the generalized Hermite  distribution is defined as a1+mam and a1 +m2am respectively. The generalized 

Hermite  distribution converges to a Hermite  distribution when m=2. 

In hermit regression the distribution of the response variable is assumed to follow a Hermite  distribution. Similar to Poisson 

regression, Gile has related the mean function to an exponential of linear combination of covariates i.e., 𝜇𝑖 = exp (𝑥𝑖
′𝛽) [9]. The 

parameters of the Hermite  regression can be obtained using maximum likelihood estimation technique[10]. 

 

Test for multimodality 

Haritgan’s dip test can be used to test the significance of multimodality in a variable[11]. The test is performed by comparing the 

empirical distribution function and a unimodal distribution function. Let Fn(x) be the empirical distribution function an H(x) be a 

the closest unimodal distribution function respect to the empirical distribution, 

     The DIP statistic = sup|Fn(x)-H(x)|     (9) 

The test uses uniform distribution as the reference distribution to compute the p value. A significant dip test indicates the presence 

of more than one mode.  

 

Analysis of residuals 

Pearson and deviance residual are the most common standardized residuals for count regression model.  As count variable are 

observed in a very limited range, Pearson and deviance residual produces overlapping residuals which might distort the information 

in residual plots[12]. Hence, in this study Randomized Quantile Residuals (RQR) are used to evaluate the goodness of fit of the 

models. The RQR are obtained by inverting the fitted distribution function and calculating the corresponding standard normal 

quantile for each observation. RQR for continuous distribution function is defined as, 

𝑞𝑖 = Φ−1(𝐹(𝑦𝑖|𝜃�̂�) )          (10) 

where,  Φ−1 is the quantile function of a standard normal distribution. For discrete variables, a uniform random component is 

introduced in order to avoid the overlapping of residual values. The RQR for discrete distribution function is defined as, 

𝑞𝑖 = Φ−1( 𝑢𝑖)        (11) 

where, ui is random value from a uniform distribution with interval [𝐹(𝑦𝑖 − 1|𝜃�̂�), 𝐹(𝑦𝑖|𝜃�̂�)]. The RQR follows a standard normal 

distribution if the model is correctly specified[13]. Hence the test of normality of RQR can be used as a technique to assess the 

goodness of fit of the model. Due to the randomness involved in the calculation, RQR were computed 1000 times for each model 

and the average of summary statistics and p value of normality test were taken. 

 

Data 

The data for comparing the performance of the models was obtained from the PRAMMS - Prospective Assessment of Maternal 

Mental Health Study, a community based prospective study on anxiety, depression and stress during pregnancy and its relationship 

to pregnancy outcomes.  The data was collected from pregnant women attending antenatal clinic at the government referral hospital, 

Bengaluru, India during 2014 and November 2015.  Informed consent was obtained from each participants and study was approved 

by the institute ethical committee.  The number of somatic symptoms experienced by women during the first trimester, a count 

variable was considered as the response variable for fitting the models. The variable was composed of 25 symptoms such as 

headache, palpitations, weakness of mind, lack of sleep, nausea, etc. 

  

RESULTS 

 

The final dataset used for analysis contained information on 490 pregnant women. The response variable, the number of somatic 

symptoms was observed with a mean count of 5.50 and standard deviation 3.29 ranging from 0 to 25 (fig. 1). The average age of 

the subjects was 22.99 (s. d. = 3.40) years. The Socio Economic Status (SES) of 80.41% (n = 394) women was above poverty line 

(table 1). Among the pregnant women 78 (15.92%) had history of abortion and 219 (44.69%) were primiparous. 

 

Table 1: Socio demographic and clinical profile of participants 

Variable n (%) 

Age in years* 23.06 (3.44) 

Education 
Above secondary 137 (27. 96) 

Up to secondary 353 (72.04) 

SES 

Medium or upper 183 (37.35) 

Low 211 (43.06) 

BPL† 96 (19.59) 

Parity 

Two or more 29 (5.92) 

One 242 (49.39) 

Zero 219 (44.69) 

Abortion History 
Yes 78 (15.92) 

No 412 (84.08) 
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Depression 
Yes 34 (6.94) 

No 456 (93.06) 

Stress score* 12.79 (3.44) 

Mid arm circumference (c.m.) 25.07 (3.23) 

* Mean(s.d.), † Below Poverty Line 

   

Figure 1: Distribution of the number of somatic symptoms 

 
 

 

Univariate analyses were carried out to select the predictors to construct the multivariable models. Poisson regression was fitted to 

the data as first attempt of modelling count data (table 2). The equidispersion assumption was tested using an auxiliary regression 

based test assuming overdispersion under the alternative hypothesis. The significance of test (t statistic = 6.223, p value = <0.001) 

indicated that the data was overdispersed. Hence, NB regression was fitted in order to account the extra Poisson variability in the 

data.  

 

Due to over dispersion, the standard errors of the estimates of the Poisson regression were observed to be underestimated (table 2). 

The smaller standard errors inflated the values of z statistic, which resulted in smaller p values. However, the significant factors 

predating number of somatic symptoms were same for both models. The history of abortion was found to be marginally significant 

(p value = 0.067) in Poisson regression. Even in the presence of over dispersion the estimated parameters of the Poisson model were 

similar to the estimates of NB regression for most of the variables.  
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 Table 2: Poisson and negative binomial model fit to number of somatic symptoms  

Variable 
Poisson Negative binomial 

Estimate S. E. p value Estimate S. E. p value 

Age in years -0.006 0.007 0.338 -0.006 0.009 0.509 

Education Above secondary* -0.067 0.045 0.131 -0.079 0.06 0.191 

Socio 

Economic 

Status 

Medium or upper -0.058 0.055 0.695 -0.049 0.075 0.509 

Low 0.021 0.053 0.293 0.031 0.072 0.673 

BPL Reference -  Reference -  

Parity 

two or more -0.113 0.086 0.186 -0.141 0.12 0.237 

One -0.261 0.044 <0.001 -0.264 0.06 <0.001 

Zero Reference -  Reference -  

Abortion 

History 
Yes 0.096 0.053 0.069 0.102 0.073 0.161 

Stress score 0.035 0.005 <0.001 0.036 0.008 <0.001 

Mid arm circumference (c.m.) 0.009 0.006 0.137 0.01 0.009 0.265 

Depression Yes 0.242 0.076 0.001 0.244 0.111 0.028 

Dispersion parameter - -  6.54 1.000  

*Ref. category-up to secondary, BPL-Below Poverty Line,  

 

The response variable was observed to have multiple peaks (figure 1). Hence, Hartigan’s dip test was performed suspecting 

multimodality in the distribution of response variable. The significance of the test (test statistic = 0.077, p value = <0.001) indicated 

that the population from where the response variable was taken is at least bimodal.  Hence, suspecting a poor fit of NB regression 

for the multimodal response variable, Hermite  and generalized Hermite  regression model were attempted (table 3).  

Even in the presence of multimodality, significant variables identified by NB model were similar to the significant predictors 

obtained from Hermite  regression fit. The estimated coefficients and standard errors of Hermite  and generalized Hermite  

regressions were similar (table 3). The models identified parity, stress and depression as the significant predictors of the response 

variable.  

 

Likelihood based fit indices based fit such as Akaike Information Citerion (AIC) and Bayesian Information Criterion (BIC) were 

used to compare the relative fit of the models (table 4). Models with smaller fit indices indicates the better fit of the model for the 

data.  The lower value of the fit indices (AIC = 2458 and BIC = 2515) indicates a superior fit of the Hermite  regression model over 

the others, supporting the detection of multimodality and overdispersion in the response variable. Generalized Hermite  regression 

was found to be inferior to Hermite  regression model. AIC indicated that both multimodal regression models had better fit over the 

Poisson and NB models. The values of BIC were similar for NB and the multimodal models. Whereas, Poison model had 

substantially larger BIC (2606) values. To check the absolute goodness of fit of the models, RQR were computed and assessed the 

distributional properties (table 4). Only Hermite  and generalized Hermite  models had standard normal RQR, indicated good fit of 

the models to the data. The RQR of Poisson regression was normal but the standard deviation (1.330) was larger. Whereas the NB 

regression failed to have normal residuals (p = 0.014). Due to the incidence of overdispersion and multimodality Poisson regression 

gave the poor fit among the fitted models.  

 

Table 3:  Hermite and generalized Hermite  model fit to number of somatic symptoms  

Variable 
Hermite Generalized Hermite 

Estimate S. E. p value Estimate S. E. p value 

Age in years -0.003 0.008 0.729 -0.004 0.009 0.675 

Education* 
Above 

secondary 
-0.065 0.057 0.258 -0.067 0.061 0.271 

Socio 

Economic 

Status$ 

Medium or 

upper 
-0.074 0.070 0.294 -0.070 0.075 0.355 

Low -0.011 0.068 0.866 0.001 0.073 0.991 

BPL Reference -  Reference -  

Parity 

2 or more -0.160 0.112 0.152 -0.127 0.118 0.284 

1 -0.274 0.057 <0.001 -0.273 0.061 <0.001 

Zero Reference -  Reference -  
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Abortion 

History 
Yes 0.089 0.068 0.189 0.128 0.073 0.076 

Stress score 0.035 0.007 <0.001 0.031 0.007 <0.001 

Mid arm circumference (c.m.) 0.011 0.008 0.176 0.007 0.009 0.364 

Depression Yes 0.247 0.098 0.011 0.278 0.105 0.008 

    *Ref. category-up to secondary, BPL-Below Poverty Line 
 

Table 4: Comparison of model fit 

Model fit 

Fit index Randomized Quantile Residuals* 

AIC BIC Mean S. D. 
Test of normality 

W p value 

Poisson 2560 2606 0.057 1.330 0.996 0.350 

Negative binomial 2465 2516 -0.007 1.024 0.855 0.014 

Hermite 2458 2515 -0.006 1.037 0.997 0.464 

Generalized Hermite  2460 2517 0.011 0.953 0.996 0.411 

*average of 1000 residuals 

 

Similar to the Poisson regression model, the Hermite  regression and the generalized Hermite  regression were modelled using a log 

link function. As the coefficients of count regression models are interpreted generally as Incidence Rate Ratio [7], we are interpreting 

the exponential of coefficients of the Hermite  regression in terms of Incidence Rate Ratio (IRR).  

The Hermite  regression identified parity, stress score and history of depression as the significant predictors of number of somatic 

symptoms experienced by pregnant women (table 5). Women with depression experienced 26% more symptoms compared to 

women who were not depressed. Women who had given birth once (parity = 1) experienced 24% less events compared to women 

who have not given birth at least once. However, more than one birth (parity = two or more) did not have any significant effect on 

the number of somatic symptoms. Though the history of abortion was not significant, women with history of abortion experienced 

11% more symptoms compared to women who did not have history of abortion. 

 

Table 5:  Hermite regression model fit 

Variable IRR ((95% C. I.) 

Age in years 0.995 (0.980, 1.011) 

Education 
Above secondary 0.934(0.836, 1.045) 

Up to secondary - 

Socio Economic 

Status 

Medium or upper 0.937(0.817, 1.075) 

Low 1.015(0.888, 1.160) 

BPL - 

Parity 

Two or more 0.889 (0.716, 1.103) 

One 0.763(0.682,  0.853) 

Zero - 

Abortion History 
Yes 1.110 (0.971, 1.268) 

No - 

Stress score 1.037 (1.023, 1.051) 

Mid arm circumference (c.m.) 1.009(0.993, 1.025) 

Depression 
Yes 1.261 (1.041, 1.528) 

No - 

BPL- Below Poverty Line 
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DISCUSSION 

The count variables are often observed in biomedical research as an outcome of interest. Count variable shows varying properties 

such as, overdispersion, zero inflation, zero truncation at various situations. Multimodality is also a concern while modelling count 

variables. However, only handful of literatures have discussed the multimodality in count data modelling. We have found with the 

illustrative example that the Hermite  regression approach is appropriate when the data is tested multimodal and overdispersed. The 

Hermite  regression was emerged as the most plausible fitting model among the four fitted models. The better fit of Hermite  

regression over generalized Hermite  regression was might be due to the less severe overdispersion and multimodality.  

 

The results were also quite similar between the Poisson and NB regression models as the overdispersion was not so severe. The 

multimodal model regression models might show substantial difference in estimates and standard errors from the standard count 

models if fitted to a data with high multimodality. The hermit regression is easy to use as its modeling is similar to other basic count 

regression models. Moreover the estimates can be obtained using maximum likelihood method of estimation. However the 

prevalence of   multimodality in count variable is not really known. 
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